StartseiteGruppenForumMehrZeitgeist
Web-Site durchsuchen
Diese Seite verwendet Cookies für unsere Dienste, zur Verbesserung unserer Leistungen, für Analytik und (falls Sie nicht eingeloggt sind) für Werbung. Indem Sie LibraryThing nutzen, erklären Sie dass Sie unsere Nutzungsbedingungen und Datenschutzrichtlinie gelesen und verstanden haben. Die Nutzung unserer Webseite und Dienste unterliegt diesen Richtlinien und Geschäftsbedingungen.

Ergebnisse von Google Books

Auf ein Miniaturbild klicken, um zu Google Books zu gelangen.

Lädt ...

Factorization and Primality Testing

von David M. Bressoud

MitgliederRezensionenBeliebtheitDurchschnittliche BewertungDiskussionen
26Keine896,843KeineKeine
"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a "smooth" number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors.… (mehr)
Keine
Lädt ...

Melde dich bei LibraryThing an um herauszufinden, ob du dieses Buch mögen würdest.

Keine aktuelle Diskussion zu diesem Buch.

Keine Rezensionen
keine Rezensionen | Rezension hinzufügen

Gehört zu Verlagsreihen

Du musst dich einloggen, um "Wissenswertes" zu bearbeiten.
Weitere Hilfe gibt es auf der "Wissenswertes"-Hilfe-Seite.
Gebräuchlichster Titel
Die Informationen stammen von der englischen "Wissenswertes"-Seite. Ändern, um den Eintrag der eigenen Sprache anzupassen.
Originaltitel
Alternative Titel
Ursprüngliches Erscheinungsdatum
Figuren/Charaktere
Wichtige Schauplätze
Wichtige Ereignisse
Zugehörige Filme
Epigraph (Motto/Zitat)
Widmung
Erste Worte
Zitate
Letzte Worte
Hinweis zur Identitätsklärung
Verlagslektoren
Werbezitate von
Originalsprache
Anerkannter DDC/MDS
Anerkannter LCC

Literaturhinweise zu diesem Werk aus externen Quellen.

Wikipedia auf Englisch (3)

"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a "smooth" number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors.

Keine Bibliotheksbeschreibungen gefunden.

Buchbeschreibung
Zusammenfassung in Haiku-Form

Aktuelle Diskussionen

Keine

Beliebte Umschlagbilder

Gespeicherte Links

Bewertung

Durchschnitt: Keine Bewertungen.

Bist das du?

Werde ein LibraryThing-Autor.

 

Über uns | Kontakt/Impressum | LibraryThing.com | Datenschutz/Nutzungsbedingungen | Hilfe/FAQs | Blog | LT-Shop | APIs | TinyCat | Nachlassbibliotheken | Vorab-Rezensenten | Wissenswertes | 206,477,453 Bücher! | Menüleiste: Immer sichtbar