StartseiteGruppenForumMehrZeitgeist
Web-Site durchsuchen
Diese Seite verwendet Cookies für unsere Dienste, zur Verbesserung unserer Leistungen, für Analytik und (falls Sie nicht eingeloggt sind) für Werbung. Indem Sie LibraryThing nutzen, erklären Sie dass Sie unsere Nutzungsbedingungen und Datenschutzrichtlinie gelesen und verstanden haben. Die Nutzung unserer Webseite und Dienste unterliegt diesen Richtlinien und Geschäftsbedingungen.
Hide this

Ergebnisse von Google Books

Auf ein Miniaturbild klicken, um zu Google Books zu gelangen.

Knot Theory and Its Applications (Modern…
Lädt ...

Knot Theory and Its Applications (Modern Birkhäuser Classics) (2007. Auflage)

von Kunio Murasugi (Autor)

MitgliederRezensionenBeliebtheitDurchschnittliche BewertungDiskussionen
16Keine1,072,971KeineKeine
Knot theory is a concept in algebraic topology that has found applications to a variety of mathematical problems as well as to problems in computer science, biological and medical research, and mathematical physics. This book is directed to a broad audience of researchers, beginning graduate students, and senior undergraduate students in these fields. The book contains most of the fundamental classical facts about the theory, such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials; also included are key newer developments and special topics such as chord diagrams and covering spaces. The work introduces the fascinating study of knots and provides insight into applications to such studies as DNA research and graph theory. In addition, each chapter includes a supplement that consists of interesting historical as well as mathematical comments. The author clearly outlines what is known and what is not known about knots. He has been careful to avoid advanced mathematical terminology or intricate techniques in algebraic topology or group theory. There are numerous diagrams and exercises relating the material. The study of Jones polynomials and the Vassiliev invariants are closely examined. "The book ...develops knot theory from an intuitive geometric-combinatorial point of view, avoiding completely more advanced concepts and techniques from algebraic topology...Thus the emphasis is on a lucid and intuitive exposition accessible to a broader audience... The book, written in a stimulating and original style, will serve as a first approach to this interesting field for readers with various backgrounds in mathematics, physics, etc. It is the first text developing recent topics as the Jones polynomial and Vassiliev invariants on a level accessible also for non-specialists in the field." -Zentralblatt Math… (mehr)
Mitglied:morphismus
Titel:Knot Theory and Its Applications (Modern Birkhäuser Classics)
Autoren:Kunio Murasugi (Autor)
Info:Birkhäuser (2007), 341 pages
Sammlungen:Deine Bibliothek
Bewertung:
Tags:Keine

Werk-Details

Knot Theory and its Applications von Kunio Murasugi

Kürzlich hinzugefügt vonmorphismus, LibraryImporter, dwpaxson, rjanish, uspoulos, jodi, irmac
Keine
Lädt ...

Melde dich bei LibraryThing an um herauszufinden, ob du dieses Buch mögen würdest.

Keine aktuelle Diskussion zu diesem Buch.

Keine Rezensionen
keine Rezensionen | Rezension hinzufügen
Du musst dich einloggen, um "Wissenswertes" zu bearbeiten.
Weitere Hilfe gibt es auf der "Wissenswertes"-Hilfe-Seite.
Gebräuchlichster Titel
Originaltitel
Alternative Titel
Ursprüngliches Erscheinungsdatum
Figuren/Charaktere
Wichtige Schauplätze
Wichtige Ereignisse
Zugehörige Filme
Preise und Auszeichnungen
Epigraph (Motto/Zitat)
Widmung
Erste Worte
Zitate
Letzte Worte
Hinweis zur Identitätsklärung
Verlagslektoren
Werbezitate von
Originalsprache
Anerkannter DDC/MDS
Anerkannter LCC

Literaturhinweise zu diesem Werk aus externen Quellen.

Wikipedia auf Englisch (1)

Knot theory is a concept in algebraic topology that has found applications to a variety of mathematical problems as well as to problems in computer science, biological and medical research, and mathematical physics. This book is directed to a broad audience of researchers, beginning graduate students, and senior undergraduate students in these fields. The book contains most of the fundamental classical facts about the theory, such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials; also included are key newer developments and special topics such as chord diagrams and covering spaces. The work introduces the fascinating study of knots and provides insight into applications to such studies as DNA research and graph theory. In addition, each chapter includes a supplement that consists of interesting historical as well as mathematical comments. The author clearly outlines what is known and what is not known about knots. He has been careful to avoid advanced mathematical terminology or intricate techniques in algebraic topology or group theory. There are numerous diagrams and exercises relating the material. The study of Jones polynomials and the Vassiliev invariants are closely examined. "The book ...develops knot theory from an intuitive geometric-combinatorial point of view, avoiding completely more advanced concepts and techniques from algebraic topology...Thus the emphasis is on a lucid and intuitive exposition accessible to a broader audience... The book, written in a stimulating and original style, will serve as a first approach to this interesting field for readers with various backgrounds in mathematics, physics, etc. It is the first text developing recent topics as the Jones polynomial and Vassiliev invariants on a level accessible also for non-specialists in the field." -Zentralblatt Math

Keine Bibliotheksbeschreibungen gefunden.

Buchbeschreibung
Zusammenfassung in Haiku-Form

Beliebte Umschlagbilder

Gespeicherte Links

Bewertung

Durchschnitt: Keine Bewertungen.

Bist das du?

Werde ein LibraryThing-Autor.

 

Über uns | Kontakt/Impressum | LibraryThing.com | Datenschutz/Nutzungsbedingungen | Hilfe/FAQs | Blog | LT-Shop | APIs | TinyCat | Nachlassbibliotheken | Vorab-Rezensenten | Wissenswertes | 163,312,962 Bücher! | Menüleiste: Immer sichtbar