StartseiteGruppenForumMehrZeitgeist
Web-Site durchsuchen
Diese Seite verwendet Cookies für unsere Dienste, zur Verbesserung unserer Leistungen, für Analytik und (falls Sie nicht eingeloggt sind) für Werbung. Indem Sie LibraryThing nutzen, erklären Sie dass Sie unsere Nutzungsbedingungen und Datenschutzrichtlinie gelesen und verstanden haben. Die Nutzung unserer Webseite und Dienste unterliegt diesen Richtlinien und Geschäftsbedingungen.

Ergebnisse von Google Books

Auf ein Miniaturbild klicken, um zu Google Books zu gelangen.

Lädt ...

On Sudakov's type decomposition of transference plans with norm costs

von Stefano Bianchini

MitgliederRezensionenBeliebtheitDurchschnittliche BewertungDiskussionen
1Keine7,792,391KeineKeine
The authors consider the original strategy proposed by Sudakov for solving the Monge transportation problem with norm cost $|cdot|_{{D^*}}$$min bigg{{ int |mathtt T(x) - x|_{{D^*}} dmu(x), mathtt T : mathbb{{R}}^d to mathbb{{R}}^d, nu = mathtt T_# mu bigg}},$ with $mu$, $nu$ probability measures in $mathbb{{R}}^d$ and $mu$ absolutely continuous w.r.t. $mathcal{{L}}^d$. The key idea in this approach is to decompose (via disintegration of measures) the Kantorovich optimal transportation problem into a family of transportation problems in $Z_alphatimes mathbb{{R}}^d$, where ${{Z_alpha}}_{{alphainmathfrak{{A}}}} subset mathbb{{R}}^d$ are disjoint regions such that the construction of an optimal map $mathtt T_alpha : Z_alpha to mathbb{{R}}^d$ is simpler than in the original problem, and then to obtain $mathtt T$ by piecing together the maps $mathtt T_alpha$. When the norm $|{{cdot}}|_{{D^*}}$ is strictly convex, the sets $Z_alpha$ are a family of $1$-dimensional segments determined by the Kantorovich potential called optimal rays, while the existence of the map $mathtt T_alpha$ is straightforward provided one can show that the disintegration of $mathcal L^d$ (and thus of $mu$) on such segments is absolutely continuous w.r.t. the $1$-dimensional Hausdorff measure. When the norm $|{{cdot}}|_{{D^*}}$ is not strictly convex, the main problems in this kind of approach are two: first, to identify a suitable family of regions ${{Z_alpha}}_{{alphainmathfrak{{A}}}}$ on which the transport problem decomposes into simpler ones, and then to prove the existence of optimal maps. In this paper the authors show how these difficulties can be overcome, and that the original idea of Sudakov can be successfully implemented. The results yield a complete characterization of the Kantorovich optimal transportation problem, whose straightforward corollary is the solution of the Monge problem in each set $Z_alpha$ and then in $mathbb{{R}}^d$. The strategy is sufficiently powerful to be applied to other optimal transportation problems.… (mehr)
Kürzlich hinzugefügt vonUtrechtUniversity

Keine Tags

Keine
Lädt ...

Melde dich bei LibraryThing an um herauszufinden, ob du dieses Buch mögen würdest.

Keine aktuelle Diskussion zu diesem Buch.

Keine Rezensionen
keine Rezensionen | Rezension hinzufügen
Du musst dich einloggen, um "Wissenswertes" zu bearbeiten.
Weitere Hilfe gibt es auf der "Wissenswertes"-Hilfe-Seite.
Gebräuchlichster Titel
Originaltitel
Alternative Titel
Ursprüngliches Erscheinungsdatum
Figuren/Charaktere
Wichtige Schauplätze
Wichtige Ereignisse
Zugehörige Filme
Epigraph (Motto/Zitat)
Widmung
Erste Worte
Zitate
Letzte Worte
Hinweis zur Identitätsklärung
Verlagslektoren
Werbezitate von
Originalsprache
Anerkannter DDC/MDS
Anerkannter LCC

Literaturhinweise zu diesem Werk aus externen Quellen.

Wikipedia auf Englisch

Keine

The authors consider the original strategy proposed by Sudakov for solving the Monge transportation problem with norm cost $|cdot|_{{D^*}}$$min bigg{{ int |mathtt T(x) - x|_{{D^*}} dmu(x), mathtt T : mathbb{{R}}^d to mathbb{{R}}^d, nu = mathtt T_# mu bigg}},$ with $mu$, $nu$ probability measures in $mathbb{{R}}^d$ and $mu$ absolutely continuous w.r.t. $mathcal{{L}}^d$. The key idea in this approach is to decompose (via disintegration of measures) the Kantorovich optimal transportation problem into a family of transportation problems in $Z_alphatimes mathbb{{R}}^d$, where ${{Z_alpha}}_{{alphainmathfrak{{A}}}} subset mathbb{{R}}^d$ are disjoint regions such that the construction of an optimal map $mathtt T_alpha : Z_alpha to mathbb{{R}}^d$ is simpler than in the original problem, and then to obtain $mathtt T$ by piecing together the maps $mathtt T_alpha$. When the norm $|{{cdot}}|_{{D^*}}$ is strictly convex, the sets $Z_alpha$ are a family of $1$-dimensional segments determined by the Kantorovich potential called optimal rays, while the existence of the map $mathtt T_alpha$ is straightforward provided one can show that the disintegration of $mathcal L^d$ (and thus of $mu$) on such segments is absolutely continuous w.r.t. the $1$-dimensional Hausdorff measure. When the norm $|{{cdot}}|_{{D^*}}$ is not strictly convex, the main problems in this kind of approach are two: first, to identify a suitable family of regions ${{Z_alpha}}_{{alphainmathfrak{{A}}}}$ on which the transport problem decomposes into simpler ones, and then to prove the existence of optimal maps. In this paper the authors show how these difficulties can be overcome, and that the original idea of Sudakov can be successfully implemented. The results yield a complete characterization of the Kantorovich optimal transportation problem, whose straightforward corollary is the solution of the Monge problem in each set $Z_alpha$ and then in $mathbb{{R}}^d$. The strategy is sufficiently powerful to be applied to other optimal transportation problems.

Keine Bibliotheksbeschreibungen gefunden.

Buchbeschreibung
Zusammenfassung in Haiku-Form

Aktuelle Diskussionen

Keine

Beliebte Umschlagbilder

Gespeicherte Links

Bewertung

Durchschnitt: Keine Bewertungen.

Bist das du?

Werde ein LibraryThing-Autor.

 

Über uns | Kontakt/Impressum | LibraryThing.com | Datenschutz/Nutzungsbedingungen | Hilfe/FAQs | Blog | LT-Shop | APIs | TinyCat | Nachlassbibliotheken | Vorab-Rezensenten | Wissenswertes | 207,058,371 Bücher! | Menüleiste: Immer sichtbar