StartseiteGruppenForumMehrZeitgeist
Web-Site durchsuchen
Diese Seite verwendet Cookies für unsere Dienste, zur Verbesserung unserer Leistungen, für Analytik und (falls Sie nicht eingeloggt sind) für Werbung. Indem Sie LibraryThing nutzen, erklären Sie dass Sie unsere Nutzungsbedingungen und Datenschutzrichtlinie gelesen und verstanden haben. Die Nutzung unserer Webseite und Dienste unterliegt diesen Richtlinien und Geschäftsbedingungen.

Ergebnisse von Google Books

Auf ein Miniaturbild klicken, um zu Google Books zu gelangen.

Lädt ...

Degrees Kelvin: A Tale of Genius, Invention, and Tragedy

von David Lindley

MitgliederRezensionenBeliebtheitDurchschnittliche BewertungDiskussionen
1052260,238 (3.5)1
LORD KELVIN. In 1840, a precocious 16-year-old by the name of William Thomson spent his summer vacation studying an extraordinarily sophisticated mathematical controversy. His brilliant analysis inspired lavish praise and made the boy an instant intellectual celebrity. As a young scholar William dazzled a Victorian society enthralled with the seductive authority and powerful beauty of scientific discovery. At a time when no one really understood heat, light, electricity, or magnetism, Thomson found key connections between them, laying the groundwork for two of the cornerstones of 19th century science -- the theories of electromagnetism and thermodynamics. Charismatic, confident, and boyishly handsome, Thomson was not a scientist who labored quietly in a lab, plying his trade in monkish isolation. When scores of able tinkerers were flummoxed by their inability to adapt overland telegraphic cables to underwater, intercontinental use, Thomson took to the high seas with new equipment that was to change the face of modern communications. And as the world (TM)s navies were transitioning from wooden to iron ships, they looked to Thomson to devise a compass that would hold true even when surrounded by steel. Gaining fame and wealth through his inventive genius, Thomson was elevated to the peerage by Queen Victoria for his many achievements. He was the first scientist ever to be so honored. Indeed, his name survives in the designation of degrees Kelvin, the temperature scale that begins with absolute zero, the point at which atomic motion ceases and there is a complete absence of heat. Sir William Thomson, Lord Kelvin, was Great Britain's unrivaled scientific hero. But as the century drew to a close and Queen Victoria's reign ended, this legendary scientific mind began to weaken. He grudgingly gave way to others with a keener, more modern vision. But the great physicist did not go quietly. With a ready pulpit at his disposal, he publicly proclaimed his doubts over the existence of atoms. He refused to believe that radioactivity involved the transmutation of elements. And believing that the origin of life was a matter beyond the expertise of science and better left to theologians, he vehemently opposed the doctrines of evolution, repeatedly railing against Charles Darwin. Sadly, this pioneer of modern science spent his waning years arguing that the Earth and the Sun could not be more than 100 million years old. And although his early mathematical prowess had transformed our understanding of the forces of nature, he would never truly accept the revolutionary changes he had helped bring about, and it was others who took his ideas to their logical conclusion. In the end Thomson came to stand for all that was old and complacent in the world of 19th century science. Once a scientific force to be reckoned with, a leader to whom others eagerly looked for answers, his peers in the end left him behind -- and then meted out the ultimate punishment for not being able to keep step with them. For while they were content to bury him in Westminster Abbey alongside Isaac Newton, they used his death as an opportunity to write him out of the scientific record, effectively denying him his place in history. Kelvin (TM)s name soon faded from the headlines, his seminal ideas forgotten, his crucial contributions overshadowed. Destined to become the definitive biography of one of the most important figures in modern science, Degrees Kelvin unravels the mystery of a life composed of equal parts triumph and tragedy, hubris and humility, yielding a surprising and compelling portrait of a complex and enigmatic man.… (mehr)
Keine
Lädt ...

Melde dich bei LibraryThing an um herauszufinden, ob du dieses Buch mögen würdest.

Keine aktuelle Diskussion zu diesem Buch.

» Siehe auch 1 Erwähnung

The author has done a fine job in bringing this man, William Thomson (Lord Kelvin) to life. He was one of the primary movers of the scientific world of the Victorian era, and much can be learned of the development of the physical sciences through a study of his methods, personal interactions, and achievements.
Thomson was one of the dozen or so illustrious men, almost entirely British, Scottish, German and French, who developed the central ideas of thermodynamics and electromagnetism in the middle of the 19th century. His particular contribution, among many, was to popularize and further develop the ideas of the Frenchman, Carnot, of the famous reversible heat engine. This was to lead ultimately to the discovery of the absolute temperature scale, now named for him, and to entropy. In electromagnetism, he stood between the non-mathematical insights of Faraday, and the highly mathematical formulation of Maxwell and Heaviside, which has changed little in its fundamental approach, and is still taught to sophomores today. In fact, he and a friend wrote the first recognizable classical physics textbook for undergraduates. And he played a big role as a consultant/inventor for the first transatlantic telegraph cable, a story well told here and in Gordon's recent "Thread Across the Ocean."

Thomson was something of a prodigy, gathering honors and publications at a very young age, but later in life his productivity fell off into an idosyncratic crankiness. His required approach to problems was to devise mechanical analogs for phenomena, which turned out to be too limited to arrive at a full field theory of electromagnetism and atomism, neither of which he ever accepted fully. He was a true believer in the ether, but was never able to use it to produce a fruitful alternative to Maxwell's E&M or kinetic theory.

It was interesting for me to note the obvious parallels between his life-arc and that of Einstein. Einstein was also unable to fully participate in the later scientific developments in quantum mechanics because of a prejudice or block similar to Thomson's requirement for a mechanical model. And then Kelvin spent an inordinate amount of energy in developing an improved ship's compass (a profitable success), while Einstein tried mightily (but unsuccessfully) to improve the refrigerator. Einstein killed Kelvin's ether by ignoring it, but was in turn killed by his insistence that "God doesn't play with dice."

Lindley has written a well-researched but entertaining and well written book. The illustrations are a good addition, not seen before by me. A scientist himself, he is well equipped to understand the science of the times, and is unerring and enthusiastic for his subject. Well done! ( )
1 abstimmen DonSiano | Oct 19, 2006 |
keine Rezensionen | Rezension hinzufügen
Du musst dich einloggen, um "Wissenswertes" zu bearbeiten.
Weitere Hilfe gibt es auf der "Wissenswertes"-Hilfe-Seite.
Gebräuchlichster Titel
Originaltitel
Alternative Titel
Ursprüngliches Erscheinungsdatum
Figuren/Charaktere
Die Informationen stammen von der englischen "Wissenswertes"-Seite. Ändern, um den Eintrag der eigenen Sprache anzupassen.
Wichtige Schauplätze
Wichtige Ereignisse
Zugehörige Filme
Epigraph (Motto/Zitat)
Widmung
Erste Worte
Zitate
Letzte Worte
Hinweis zur Identitätsklärung
Verlagslektoren
Werbezitate von
Originalsprache
Anerkannter DDC/MDS
Anerkannter LCC

Literaturhinweise zu diesem Werk aus externen Quellen.

Wikipedia auf Englisch (4)

LORD KELVIN. In 1840, a precocious 16-year-old by the name of William Thomson spent his summer vacation studying an extraordinarily sophisticated mathematical controversy. His brilliant analysis inspired lavish praise and made the boy an instant intellectual celebrity. As a young scholar William dazzled a Victorian society enthralled with the seductive authority and powerful beauty of scientific discovery. At a time when no one really understood heat, light, electricity, or magnetism, Thomson found key connections between them, laying the groundwork for two of the cornerstones of 19th century science -- the theories of electromagnetism and thermodynamics. Charismatic, confident, and boyishly handsome, Thomson was not a scientist who labored quietly in a lab, plying his trade in monkish isolation. When scores of able tinkerers were flummoxed by their inability to adapt overland telegraphic cables to underwater, intercontinental use, Thomson took to the high seas with new equipment that was to change the face of modern communications. And as the world (TM)s navies were transitioning from wooden to iron ships, they looked to Thomson to devise a compass that would hold true even when surrounded by steel. Gaining fame and wealth through his inventive genius, Thomson was elevated to the peerage by Queen Victoria for his many achievements. He was the first scientist ever to be so honored. Indeed, his name survives in the designation of degrees Kelvin, the temperature scale that begins with absolute zero, the point at which atomic motion ceases and there is a complete absence of heat. Sir William Thomson, Lord Kelvin, was Great Britain's unrivaled scientific hero. But as the century drew to a close and Queen Victoria's reign ended, this legendary scientific mind began to weaken. He grudgingly gave way to others with a keener, more modern vision. But the great physicist did not go quietly. With a ready pulpit at his disposal, he publicly proclaimed his doubts over the existence of atoms. He refused to believe that radioactivity involved the transmutation of elements. And believing that the origin of life was a matter beyond the expertise of science and better left to theologians, he vehemently opposed the doctrines of evolution, repeatedly railing against Charles Darwin. Sadly, this pioneer of modern science spent his waning years arguing that the Earth and the Sun could not be more than 100 million years old. And although his early mathematical prowess had transformed our understanding of the forces of nature, he would never truly accept the revolutionary changes he had helped bring about, and it was others who took his ideas to their logical conclusion. In the end Thomson came to stand for all that was old and complacent in the world of 19th century science. Once a scientific force to be reckoned with, a leader to whom others eagerly looked for answers, his peers in the end left him behind -- and then meted out the ultimate punishment for not being able to keep step with them. For while they were content to bury him in Westminster Abbey alongside Isaac Newton, they used his death as an opportunity to write him out of the scientific record, effectively denying him his place in history. Kelvin (TM)s name soon faded from the headlines, his seminal ideas forgotten, his crucial contributions overshadowed. Destined to become the definitive biography of one of the most important figures in modern science, Degrees Kelvin unravels the mystery of a life composed of equal parts triumph and tragedy, hubris and humility, yielding a surprising and compelling portrait of a complex and enigmatic man.

Keine Bibliotheksbeschreibungen gefunden.

Buchbeschreibung
Zusammenfassung in Haiku-Form

Aktuelle Diskussionen

Keine

Beliebte Umschlagbilder

Gespeicherte Links

Bewertung

Durchschnitt: (3.5)
0.5
1
1.5
2
2.5
3 2
3.5 2
4 2
4.5
5

Bist das du?

Werde ein LibraryThing-Autor.

 

Über uns | Kontakt/Impressum | LibraryThing.com | Datenschutz/Nutzungsbedingungen | Hilfe/FAQs | Blog | LT-Shop | APIs | TinyCat | Nachlassbibliotheken | Vorab-Rezensenten | Wissenswertes | 205,455,311 Bücher! | Menüleiste: Immer sichtbar